44 research outputs found

    Stabilizing reinforcement learning control: A modular framework for optimizing over all stable behavior

    Full text link
    We propose a framework for the design of feedback controllers that combines the optimization-driven and model-free advantages of deep reinforcement learning with the stability guarantees provided by using the Youla-Kucera parameterization to define the search domain. Recent advances in behavioral systems allow us to construct a data-driven internal model; this enables an alternative realization of the Youla-Kucera parameterization based entirely on input-output exploration data. Perhaps of independent interest, we formulate and analyze the stability of such data-driven models in the presence of noise. The Youla-Kucera approach requires a stable "parameter" for controller design. For the training of reinforcement learning agents, the set of all stable linear operators is given explicitly through a matrix factorization approach. Moreover, a nonlinear extension is given using a neural network to express a parameterized set of stable operators, which enables seamless integration with standard deep learning libraries. Finally, we show how these ideas can also be applied to tune fixed-structure controllers.Comment: Preprint; 18 pages. arXiv admin note: text overlap with arXiv:2304.0342

    Reinforcement Learning with Partial Parametric Model Knowledge

    Full text link
    We adapt reinforcement learning (RL) methods for continuous control to bridge the gap between complete ignorance and perfect knowledge of the environment. Our method, Partial Knowledge Least Squares Policy Iteration (PLSPI), takes inspiration from both model-free RL and model-based control. It uses incomplete information from a partial model and retains RL's data-driven adaption towards optimal performance. The linear quadratic regulator provides a case study; numerical experiments demonstrate the effectiveness and resulting benefits of the proposed method.Comment: IFAC World Congress 202

    Meta-Reinforcement Learning for the Tuning of PI Controllers: An Offline Approach

    Full text link
    Meta-learning is a branch of machine learning which trains neural network models to synthesize a wide variety of data in order to rapidly solve new problems. In process control, many systems have similar and well-understood dynamics, which suggests it is feasible to create a generalizable controller through meta-learning. In this work, we formulate a meta reinforcement learning (meta-RL) control strategy that can be used to tune proportional--integral controllers. Our meta-RL agent has a recurrent structure that accumulates "context" to learn a system's dynamics through a hidden state variable in closed-loop. This architecture enables the agent to automatically adapt to changes in the process dynamics. In tests reported here, the meta-RL agent was trained entirely offline on first order plus time delay systems, and produced excellent results on novel systems drawn from the same distribution of process dynamics used for training. A key design element is the ability to leverage model-based information offline during training in simulated environments while maintaining a model-free policy structure for interacting with novel processes where there is uncertainty regarding the true process dynamics. Meta-learning is a promising approach for constructing sample-efficient intelligent controllers.Comment: 23 pages; postprin

    Optical Lattices for Atom Based Quantum Microscopy

    Full text link
    We describe new techniques in the construction of optical lattices to realize a coherent atom-based microscope, comprised of two atomic species used as target and probe atoms, each in an independently controlled optical lattice. Precise and dynamic translation of the lattices allows atoms to be brought into spatial overlap to induce atomic interactions. For this purpose, we have fabricated two highly stable, hexagonal optical lattices, with widely separted wavelengths but identical lattice constants using diffractive optics. The relative translational stability of 12nm permits controlled interactions and even entanglement operations with high fidelity. Translation of the lattices is realized through a monolithic electro-optic modulator array, capable of moving the lattice smoothly over one lattice site in 11 microseconds, or rapidly on the order of 100 nanoseconds.Comment: 7 pages, 9 figure

    Meta-Reinforcement Learning for Adaptive Control of Second Order Systems

    Full text link
    Meta-learning is a branch of machine learning which aims to synthesize data from a distribution of related tasks to efficiently solve new ones. In process control, many systems have similar and well-understood dynamics, which suggests it is feasible to create a generalizable controller through meta-learning. In this work, we formulate a meta reinforcement learning (meta-RL) control strategy that takes advantage of known, offline information for training, such as a model structure. The meta-RL agent is trained over a distribution of model parameters, rather than a single model, enabling the agent to automatically adapt to changes in the process dynamics while maintaining performance. A key design element is the ability to leverage model-based information offline during training, while maintaining a model-free policy structure for interacting with new environments. Our previous work has demonstrated how this approach can be applied to the industrially-relevant problem of tuning proportional-integral controllers to control first order processes. In this work, we briefly reintroduce our methodology and demonstrate how it can be extended to proportional-integral-derivative controllers and second order systems.Comment: AdCONIP 2022. arXiv admin note: substantial text overlap with arXiv:2203.0966
    corecore